Skip to content

Integrate with MosaicML Composer

Composer is an open-source deep learning training library by MosaicML. Built on top of PyTorch, the Composer library makes it easier to implement distributed training workflows on large-scale clusters.

Instrument your runs with Comet to start managing experiments, log prompts iterations and track automatically code and Git metadata for faster and easier reproducibility and collaboration.

Open In Colab

Comet SDKMinimum SDK versionMinimum composer version
Python-SDK3.33.100.16.1

Start logging

Add the following lines of code to your script or notebook to start logging:

import comet_ml

import composer
import torch
from composer.loggers import CometMLLogger
from composer.models import ComposerClassifier

# Your code here

comet_logger = CometMLLogger()

trainer = composer.trainer.Trainer(
    model=model,
    train_dataloader=train_dataloader,
    eval_dataloader=test_dataloader,
    max_duration=train_epochs,
    optimizers=optimizer,
    schedulers=lr_scheduler,
    device=device,
    loggers=comet_logger,
)

trainer.fit()

Note

There are other ways to configure Comet. See more here.

Log automatically

The Comet Composer integration automatically tracks the following:

End-to-end example

Following is an example is based on the offical Getting Started example. The code trains an Resnet to detect classes from the Cifar-10 dataset.

If you can't wait, check out the results of this example Composer project for a preview of what's to come.

Install dependencies

python -m pip install "comet_ml>=3.44.0" "mosaicml>=0.16.1" matplotlib

Run the example

# coding: utf-8
import comet_ml

import composer
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from composer.loggers import CometMLLogger
from composer.models import ComposerClassifier
from torchvision import datasets, transforms

comet_ml.login()
torch.manual_seed(42)  # For replicability

data_directory = "./data"

# Normalization constants
mean = (0.507, 0.487, 0.441)
std = (0.267, 0.256, 0.276)

batch_size = 1024

cifar10_transforms = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize(mean, std)]
)

train_dataset = datasets.CIFAR10(
    data_directory, train=True, download=True, transform=cifar10_transforms
)
test_dataset = datasets.CIFAR10(
    data_directory, train=False, download=True, transform=cifar10_transforms
)

# Our train and test dataloaders are PyTorch DataLoader objects!
train_dataloader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True
)
test_dataloader = torch.utils.data.DataLoader(
    test_dataset, batch_size=batch_size, shuffle=True
)


class Block(nn.Module):
    """A ResNet block."""

    def __init__(self, f_in: int, f_out: int, downsample: bool = False):
        super(Block, self).__init__()

        stride = 2 if downsample else 1
        self.conv1 = nn.Conv2d(
            f_in, f_out, kernel_size=3, stride=stride, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(f_out)
        self.conv2 = nn.Conv2d(
            f_out, f_out, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(f_out)
        self.relu = nn.ReLU(inplace=True)

        # No parameters for shortcut connections.
        if downsample or f_in != f_out:
            self.shortcut = nn.Sequential(
                nn.Conv2d(f_in, f_out, kernel_size=1, stride=2, bias=False),
                nn.BatchNorm2d(f_out),
            )
        else:
            self.shortcut = nn.Sequential()

    def forward(self, x: torch.Tensor):
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        return self.relu(out)


class ResNetCIFAR(nn.Module):
    """A residual neural network as originally designed for CIFAR-10."""

    def __init__(self, outputs: int = 10):
        super(ResNetCIFAR, self).__init__()

        depth = 56
        width = 16
        num_blocks = (depth - 2) // 6

        plan = [(width, num_blocks), (2 * width, num_blocks), (4 * width, num_blocks)]

        self.num_classes = outputs

        # Initial convolution.
        current_filters = plan[0][0]
        self.conv = nn.Conv2d(
            3, current_filters, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn = nn.BatchNorm2d(current_filters)
        self.relu = nn.ReLU(inplace=True)

        # The subsequent blocks of the ResNet.
        blocks = []
        for segment_index, (filters, num_blocks) in enumerate(plan):
            for block_index in range(num_blocks):
                downsample = segment_index > 0 and block_index == 0
                blocks.append(Block(current_filters, filters, downsample))
                current_filters = filters

        self.blocks = nn.Sequential(*blocks)

        # Final fc layer. Size = number of filters in last segment.
        self.fc = nn.Linear(plan[-1][0], outputs)
        self.criterion = nn.CrossEntropyLoss()

    def forward(self, x: torch.Tensor):
        out = self.relu(self.bn(self.conv(x)))
        out = self.blocks(out)
        out = F.avg_pool2d(out, out.size()[3])
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


model = ComposerClassifier(module=ResNetCIFAR(), num_classes=10)

optimizer = composer.optim.DecoupledSGDW(
    model.parameters(),  # Model parameters to update
    lr=0.05,  # Peak learning rate
    momentum=0.9,
    weight_decay=2.0e-3,
)

lr_scheduler = composer.optim.LinearWithWarmupScheduler(
    t_warmup="1ep",  # Warm up over 1 epoch
    alpha_i=1.0,  # Flat LR schedule achieved by having alpha_i == alpha_f
    alpha_f=1.0,
)

logger_for_baseline = CometMLLogger(
    project_name="comet-example-mosaicml-getting-started"
)

train_epochs = "3ep"
device = "gpu" if torch.cuda.is_available() else "cpu"

trainer = composer.trainer.Trainer(
    model=model,
    train_dataloader=train_dataloader,
    eval_dataloader=test_dataloader,
    max_duration=train_epochs,
    optimizers=optimizer,
    schedulers=lr_scheduler,
    device=device,
    loggers=logger_for_baseline,
)

trainer.fit()  # <-- Your training loop in action!

Try it out!

Don't just take our word for it, try it out for yourself.

Configure Comet for Composer

The Composer integration have some specific configuration that are documented in Composer's documentation.

In addition the integration follows the general Comet Configuration.

Jul. 9, 2024