Optimizer
The Optimizer class. Used to perform a search for minimum or maximum loss for a given set of parameters. Also used for a grid or random sweep of parameter space.
Note that any keyword argument not in the following will be passed onto the Experiment constructor. For example, you can pass project_name
and logging arguments by listing them here.
Args:
- config: optional, if COMET_OPTIMIZER_ID is configured, otherwise is either a config dictionary, optimizer id, or a config filename.
- trials: int (optional, default 1) number of trials per parameter set to test.
- verbose: boolean (optional, default 1) verbosity level where 0 means no output, and 1 (or greater) means to show more detail.
- experiment_class: string or callable (optional, default None), class to use (for example, OfflineExperiment).
Examples:
```python
# Assume COMET_OPTIMIZER_ID is configured:
>>> opt = Optimizer()
# An optimizer config dictionary:
>>> opt = Optimizer({"algorithm": "bayes", ...})
# An optimizer id:
>>> opt = Optimizer("73745463463")
# A filename to a optimizer config file:
>>> opt = Optimizer("/tmp/mlhacker/optimizer.config")
```
To pass arguments to the Experiment
constructor, pass them into the opt.get_experiments()
call, like so:
>>> opt = Optimizer("/tmp/mlhacker/optimizer.config")
>>> for experiment in opt.get_experiments(
... project_name="my-project",
... auto_metric_logging=False,
... ):
... loss = fit(model)
... experiment.log_metric("loss", loss")
... experiment.end()
Optimizer.init¶
__init__(config=None, trials=None, verbose=1, experiment_class="Experiment",
api_key=None, **kwargs)
The Optimizer constructor.
Args:
- config: (optional, if COMET_OPTIMIZER_ID is configured). Can an optimizer config id, an optimizer config dictionary, or an optimizer config filename.
- trials: int (optional, default 1) number of trials per parameter value set
- verbose: int (optional, default 1) level of details to show; 0 means quiet
- experiment_class: string (optional). Supported values are "Experiment" (the default) to use online Experiments or "OfflineExperiment" to use offline Experiments. It can also be a callable (a function or a method) that returns an instance of Experiment, OfflineExperiment, ExistingExperiment or ExistingOfflineExperiment.
See above for examples.
Optimizer.end¶
end(experiment)
Optimizer.end()
is called at end of experiment. Usually, you would not call this manually, as it is called directly when the experiment ends.
Optimizer.get_experiments¶
get_experiments(**kwargs)
Optimizer.get_experiments()
will iterate over all possible experiments for this sweep or search, n
at a time. All experiments will have a unique set of parameter values (unless performing multiple trials per parameter set).
Example:
```python
>>> for experiment in optimizer.get_experiments():
... loss = fit(x, y)
... experiment.log_metric("loss", loss)
```
Optimizer.get_id¶
get_id()
Get the id of this optimizer.
Example:
```
>>> opt.get_id()
87463746374647364
```
Optimizer.get_parameters¶
get_parameters()
Optimizer.get_parameters()
will iterate over all possible parameters for this sweep or search. All parameters combinations will be emitted once (unless performing multiple trials per parameter set).
Example:
```python
>>> for parameters in optimizer.get_parameters():
... experiment = comet_ml.Experiment()
... loss = fit(x, y)
... experiment.log_metric("loss", loss)
```
Optimizer.next¶
next(**kwargs)
Optimizer.next()
will return the next experiment for this sweep or search. All experiments will have a unique set of parameter values (unless performing multiple trials per parameter set).
Normally, you would not call this directly, but use the generator Optimizer.get_experiments()
Args:
- kwargs: (optional). Any keyword argument will be passed to the Experiment class for creation. The API key is passed directly.
Example:
```python
>>> experiment = optimizer.next()
>>> if experiment is not None:
... loss = fit(x, y)
... experiment.log_metric("loss", loss)
```
Optimizer.next_data¶
next_data()
Optimizer.next_data()
will return the next parameters in the Optimizer sweep.
Normally, you would not call this directly, but use the generator Optimizer.get_parameters()
Example:
```python
>>> experiment = optimizer.next_data()
```
Optimizer.status¶
status()
Get the status from the optimizer server for this optimizer.
Example:
```
>>> opt.status()
{'algorithm': 'grid',
'comboCount': 32,
'configSpaceSize': 10,
'endTime': None,
'id': 'c20b90ecad694e71bdb5702778eb8ac7',
'lastUpdateTime': None,
'maxCombo': 0,
'name': 'c20b90ecad694e71bdb5702778eb8ac7',
'parameters': {'x': {'max': 20,
'min': 0,
'scalingType': 'uniform',
'type': 'integer'}},
'retryCount': 0,
'spec': {'gridSize': 10,
'maxCombo': 0,
'metric': 'loss',
'minSampleSize': 100,
'randomize': False,
'retryLimit': 20,
'seed': 2997936454},
'startTime': 1558793292216,
'state': {
'sequence_i': 0,
'sequence_retry': 11,
'sequence_trial': 0,
'total': 32,
},
'status': 'running',
'trials': 1,
'version': '1.0.0'}
```